Digital Technology Concepts

16 Fundamental Digital Technology Concepts

Autonomy: Self-regulation by a product, process or service. e.g. Digital Clock – self corrects itself.

Aesthetics: The aspects of a product, process or service that make it pleasing to the human senses. e.g. Paint – allows colour options.


Control: The means by which a device or process is activated or regulated. e.g. Light switch.

Environmental Sustainability: The creation of products or services and use of resources in a way that allows present needs to be met without compromising the ability of future generations to meet their needs. An important related concept is that of environmental stewardship – the acceptance of responsibility for the sustainable use and treatment of land and other natural resources. e.g. Insulation – sustain desired temperature better.

Ergonomics: The design of a product, process or service in a way that takes the users well-being with respect to
its use or delivery into account – that is, in a way that minimizes discomfort, risk of injury, and expenditure of energy. e.g. Door handle height – made to fit people of various heights.

Fabrication/Building Creation: The act or process of assembling components and/or materials and resources to create a product or service. e.g. Constructing a house.

Function: The use for which a product, process or service is developed. e.g. A restaurant provides food and drinks.


Innovation: Original and creative thinking resulting in the effective design of a product or service. e.g. safety glass – shatters on impact to prevent injury.

Intelligence: The embedded information and/or learning potential in a product, process or service. e.g. Roomba Vacuum – It can learn about it’s surroundings as it cleans.

Material: Any substance or item used in the creation of a product or delivery of a service. e.g. graphene – strong and light material.

Mechanism: A system of connected parts that allows a product to work or function. e.g. a lock has a latch, dead lock, cylinder, and key.

Power/Energy: The resource that enables a mechanism to perform work. e.g. electricity powers many mechanisms.

Safety: The care and consideration required to ensure that the product, process or service will not cause harm. e.g. a smoke detector alarms people of a fire.

Source: Open-source and/or crowd-source development and interactivity. e.g. Kickstarter is a crowd source development website.

Structure: The essential physical or conceptual parts of a product, process or service, including the way in which the parts are constructed or organized. e.g. the wooden frame of a house.

Systems: The combination of interrelated parts that make up a whole and that may be connected with other systems. e.g. crane – uses weights, wires, hydraulics, etc.


Thorium Reactor – Liquid fluoride thorium reactor (LFTR)

How it works:

  1. Thorium and uranium-233 are dissolved in molten lithium fluoride salt in the reactor. As fission (radioactive decay) occurs, heat is released and free neutrons start changing more thorium into uranium-233.
  2. Heat from the reactor is transferred to another loop of molten salt not containing nuclear materials.
  3.  Heat is transferred to helium gas turning turbines to power a generator.
  4. As an emergency measure, if the system gets too hot a plug designed to melt at a specific temperature will melt and release the reactor’s components into dump tanks.
  5. Liquid salt waste can be removed while the reactor is still working.

5 changes required to make it commercially viable:

–          Nuclear waste

Although thorium produces far less waste than uranium, the problem is that it still produces waste.  For example uranium-233 is a resultant of using thorium, but can be separated into another reactor to generate electricity.

–          Renewability

There are high amounts of thorium 1,781,000 tonnes (estimated) but it will not last for ever, it is necessary to find a reliable source. There are plans to extract thorium from space, such as from the moon and mars.

–          A working reactor

People are skeptical about nuclear energy due to disasters such as the one in Fukushima Japan. If a thorium reactor is built and proves itself being effective and without problems, other countries will start building them too.

–          Dangers

Thorium breaks down into uranium-233 which can be used to make bombs. As a result, thorium reactors will need to be protected from groups such as terrorists.

–          Awareness

People must be aware that other ways of generating electricity such as wind or burning coal is not effective or is actually worse than nuclear power plants. Wind power requires too many resources to build and land to build on to be considered as efficient. While coal is adding to global warming (which is an issue that cannot be over looked) and actually carries into the surrounding environment 100 times more radiation than a nuclear power plant. Therefore, thorium is actually a good choice for generating electricity.

5 companies/groups leading in advancing thorium reactors:

–          Lightbridge Corporation

Lightbridge is a leading provider of nuclear energy consulting services to commercial and governmental entities worldwide, and is developing next generation nuclear fuel technology that will significantly reduce nuclear waste and proliferation.

–          India

India has a quarter of the world’s known thorium reserves and plans to meet 30% of its electricity demand through thorium-based reactors by 2050.

–          China

China’s aim is to break free of the old pressurized-water reactors fueled by uranium and move on to thorium which produces far less waste and is less dangerous.

–          International Thorium Energy Organization

IThEO is an organisation that campaigns internationally to make Thorium Energy a reality.

–          Thorium Power Canada Inc.

Thorium Power Canada Inc. offers a clean, green, safe and cost effective solution to the growing global energy requirements through a partnership with DBI Century Fuels Inc. taking advantage of abundant and widely available thorium deposits.

5 impacts:

–          Social

Cheaper electricity means cheaper products and services, which can mean the overall quality of life will become better. Having this new source of energy may completely change the way we live, such as the idea of space elevators or even colonizing other planets.

–          Political

Thorium reactors actually existed back in the 1960’s but nuclear power plants are currently used due to the result of the Manhattan Project. Their goal back then was to make the atomic bomb and not energy which is why thorium reactors just died off. Thorium is located in some countries more than others. When the world switches to using thorium reactors as a main source of energy, countries will have to depend on each other for resources resulting in better relationships with one another.

–          Economic

Thorium reactors can produce more money by creating more electricity at a lower price; it will also create job opportunities.

–          Environmental

By replacing uranium and burning coal, the amount of waste and pollution will decrease. Global warming will slow down dramatically if coal stops getting burned for electricity.

–          Health

Uranium-233: a resultant of thorium can treat cancer. The goal of radiotherapy is to kill cancer cells without killing healthy cells and bismuth-213 (a decay product from uranium-233) can do just that.




McDonald, Norris. “Nuclear Fuels Reprocessing Coalition.” Blogger. N.p., 1 Aug. 2012. Web. 22 Feb. 2013. <;.

“Nuclei.” A Review of the Universe – Structures, Evolutions, Observations, and Theories. N.p., n.d. Web. 24 Feb. 2013. <;.

Hvistendahl, Mara. “Coal Ash Is More Radioactive than Nuclear Waste: Scientific American.” Scientific American. N.p., 13 Dec. 2007. Web. 24 Feb. 2013. <;.

Katusa, Marin. “The Thing About Thorium: Why The Better Nuclear Fuel May Not Get A Chance.” Forbes. Forbes Magazine, 16 Feb. 2012. Web. 24 Feb. 2013. <;.

Siegel, RP. “Liquid Fluoride Thorium Power: Pros and Cons.” Triple Pundit. N.p., 23 Apr. 2012. Web. 24 Feb. 2013. <;.

Forsberg, C. W., and L. C. Lewis. Uses For Uranium-233: What Should Be Kept for Future Needs? Rep. N.p., 24 Sept. 1999. Web. 24 Feb. 2013. <;.

“Nuclear Energy For the 21st Century.” Lightbridge. N.p., n.d. Web. 24 Feb. 2013. <;.

Pritchard, Ambrose Evans. “China Blazes Trail for ‘clean’ Nuclear Power from Thorium.” The Telegraph. N.p., 6 Jan. 2013. Web. 24 Feb. 2013. <;.

“IThEO.” N.p., n.d. Web. 24 Feb. 2013. <;.

“Company & Leadership.” Thorium Power Canada Inc. N.p., n.d. Web. 24 Feb. 2013. <;.